Autonomous Agents for Builders

Autonomous Agents for Builders

Run autonomous AI agents to execute your tasks locally or remotely, 100% secure with military-grade security.

Teams at fortune 500 companies that

depend on BlackBox.AI

BlackBox

signal-limits-service

service

RateLimiter.java

RateLimitConfig.java

RateLimitMetrics.java

delivery

MessageDeliveryLoop.java

NoopDeliveryLoop.java

RedisMessageDelivery.java

challenges

ChallengeManager.java

ChallengeOption.java

RateLimitMetrics.java

RateLimiter.java

ChallengeOption.java

package service.limits;


import java.time.Instant;

import java.util.concurrent.*;

import java.util.concurrent.atomic.AtomicLong;

import java.util.concurrent.atomic.AtomicReference;


public class RateLimitMetrics {

allowedCount, blockedCount, resetCount

markReset(),getResetCount()

private final AtomicLong allowed = new AtomicLong();

private final AtomicLong blocked = new AtomicLong();

private final AtomicReference lastAllowed = new AtomicReference<>();

private final AtomicReference lastBlocked = new AtomicReference<>();


private final ConcurrentLinkedQueue samples = new ConcurrentLinkedQueue<>();


private final ScheduledExecutorService cleaner Executors.newSingleThreadScheduledExecutor();



public RateLimitMetrics() {

cleaner.scheduleAtFixedRate(this::trim, 1, 1, TimeUnit.SECONDS);

}


public void markAllowed() {

allowed.incrementAndGet();

lastAllowed.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public void markBlocked() {

blocked.incrementAndGet();

lastBlocked.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public long getAllowed() {

return allowed.get();

}


public long getBlocked() {

return blocked.get();

}


// inserted: approximate requests per second over last 60 seconds

public double requestsPerSecond() {

long now = System.currentTimeMillis();

long count = samples.stream().filter(t -> now - t <= 60_000).count();

return count / 60.0;

}


private void trim() {

long now = System.currentTimeMillis();

while (true) {

Long head = samples.peek();

if (head == null) break;

if (now - head > 60_000) samples.poll();

else break;

}

}


@Override

public String toString() {

return "allowed=" + allowed.get()

+ ", blocked=" + blocked.get()

+ ", rps=" + requestsPerSecond();

}

}





























-

-





+

+

+

+

+

+

Task

Improve the rate limiting implementation.

Thought for 2 minutes.

I'll proceed with implementing all the improvements in a logical order starting with Enhanced Metrics and Observability, then Performance Optimizations, and finally Advanced Rate Limiting Features. Let me create a TODO.md file to track our progress:

TODO.md

BlackBox.AI is thinking...

Now let's start with Phase 1: Enhanced Metrics and

Observability. First, I’ll create a comprehensive metrics class for rate limiting:

RateLimitMetrics.java

Cancel

Type a message (@ to add files)...

Auto

BLACKBOX AI

signal-server

service

RateLimiter.java

RateLimitConfig.java

RateLimitMetrics.java

delivery

MessageDeliveryLoop.java

NoopDeliveryLoop.java

RedisMessageDelivery.java

challenges

ChallengeManager.java

ChallengeOption.java

RateLimitMetrics.java

RateLimiter.java

ChallengeOption.java

package service.limits;


import java.time.Instant;

import java.util.concurrent.*;

import java.util.concurrent.atomic.AtomicLong;

import java.util.concurrent.atomic.AtomicReference;


public class RateLimitMetrics {

allowedCount, blockedCount, resetCount

markReset(), getResetCount()

private final AtomicLong allowed = new AtomicLong();

private final AtomicLong blocked = new AtomicLong();

private final AtomicReference lastAllowed = new AtomicReference<>();

private final AtomicReference lastBlocked = new AtomicReference<>();


private final ConcurrentLinkedQueue samples = new ConcurrentLinkedQueue<>();


private final ScheduledExecutorService cleaner Executors.newSingleThreadScheduledExecutor();



public RateLimitMetrics() {

cleaner.scheduleAtFixedRate(this::trim, 1, 1, TimeUnit.SECONDS);

}


public void markAllowed() {

allowed.incrementAndGet();

lastAllowed.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public void markBlocked() {

blocked.incrementAndGet();

lastBlocked.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public long getAllowed() {

return allowed.get();

}


public long getBlocked() {

return blocked.get();

}


// inserted: approximate requests per second over last 60 seconds

public double requestsPerSecond() {

long now = System.currentTimeMillis();

long count = samples.stream().filter(t -> now - t <= 60_000).count();

return count / 60.0;

}


private void trim() {

long now = System.currentTimeMillis();

while (true) {

Long head = samples.peek();

if (head == null) break;

if (now - head > 60_000) samples.poll();

else break;

}

}


@Override

public String toString() {

return "allowed=" + allowed.get()

+ ", blocked=" + blocked.get()

+ ", rps=" + requestsPerSecond();

}

}





























-

-





+

+

+

+

+

+

Task

Improve the rate limiting implementation.

Thought for 2 minutes.

I'll proceed with implementing all the improvements in a logical order starting with Enhanced Metrics and Observability, then Performance Optimizations, and finally Advanced Rate Limiting Features. Let me create a TODO.md file to track our progress:

TODO.md

BLACKBOX AI thinking...

Now let's start with Phase 1: Enhanced Metrics and

Observability. First, I’ll create a comprehensive metrics class for rate limiting:

RateLimitMetrics.java

Cancel

Type a message (@ to add files)...

Auto

BlackBox

signal-limits-service

service

RateLimiter.java

RateLimitConfig.java

RateLimitMetrics.java

delivery

MessageDeliveryLoop.java

NoopDeliveryLoop.java

RedisMessageDelivery.java

challenges

ChallengeManager.java

ChallengeOption.java

RateLimitMetrics.java

RateLimiter.java

ChallengeOption.java

package service.limits;


import java.time.Instant;

import java.util.concurrent.*;

import java.util.concurrent.atomic.AtomicLong;

import java.util.concurrent.atomic.AtomicReference;


public class RateLimitMetrics {

allowedCount, blockedCount, resetCount

markReset(),getResetCount()

private final AtomicLong allowed = new AtomicLong();

private final AtomicLong blocked = new AtomicLong();

private final AtomicReference lastAllowed = new AtomicReference<>();

private final AtomicReference lastBlocked = new AtomicReference<>();


private final ConcurrentLinkedQueue samples = new ConcurrentLinkedQueue<>();


private final ScheduledExecutorService cleaner Executors.newSingleThreadScheduledExecutor();



public RateLimitMetrics() {

cleaner.scheduleAtFixedRate(this::trim, 1, 1, TimeUnit.SECONDS);

}


public void markAllowed() {

allowed.incrementAndGet();

lastAllowed.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public void markBlocked() {

blocked.incrementAndGet();

lastBlocked.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public long getAllowed() {

return allowed.get();

}


public long getBlocked() {

return blocked.get();

}


// inserted: approximate requests per second over last 60 seconds

public double requestsPerSecond() {

long now = System.currentTimeMillis();

long count = samples.stream().filter(t -> now - t <= 60_000).count();

return count / 60.0;

}


private void trim() {

long now = System.currentTimeMillis();

while (true) {

Long head = samples.peek();

if (head == null) break;

if (now - head > 60_000) samples.poll();

else break;

}

}


@Override

public String toString() {

return "allowed=" + allowed.get()

+ ", blocked=" + blocked.get()

+ ", rps=" + requestsPerSecond();

}

}





























-

-





+

+

+

+

+

+

Task

Improve the rate limiting implementation.

Thought for 2 minutes.

I'll proceed with implementing all the improvements in a logical order starting with Enhanced Metrics and Observability, then Performance Optimizations, and finally Advanced Rate Limiting Features. Let me create a TODO.md file to track our progress:

TODO.md

BlackBox.AI is thinking...

Now let's start with Phase 1: Enhanced Metrics and

Observability. First, I’ll create a comprehensive metrics class for rate limiting:

RateLimitMetrics.java

Cancel

Type a message (@ to add files)...

Auto

BLACKBOX AI

signal-server

service

RateLimiter.java

RateLimitConfig.java

RateLimitMetrics.java

delivery

MessageDeliveryLoop.java

NoopDeliveryLoop.java

RedisMessageDelivery.java

challenges

ChallengeManager.java

ChallengeOption.java

RateLimitMetrics.java

RateLimiter.java

ChallengeOption.java

package service.limits;


import java.time.Instant;

import java.util.concurrent.*;

import java.util.concurrent.atomic.AtomicLong;

import java.util.concurrent.atomic.AtomicReference;


public class RateLimitMetrics {

allowedCount, blockedCount, resetCount

markReset(), getResetCount()

private final AtomicLong allowed = new AtomicLong();

private final AtomicLong blocked = new AtomicLong();

private final AtomicReference lastAllowed = new AtomicReference<>();

private final AtomicReference lastBlocked = new AtomicReference<>();


private final ConcurrentLinkedQueue samples = new ConcurrentLinkedQueue<>();


private final ScheduledExecutorService cleaner Executors.newSingleThreadScheduledExecutor();



public RateLimitMetrics() {

cleaner.scheduleAtFixedRate(this::trim, 1, 1, TimeUnit.SECONDS);

}


public void markAllowed() {

allowed.incrementAndGet();

lastAllowed.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public void markBlocked() {

blocked.incrementAndGet();

lastBlocked.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public long getAllowed() {

return allowed.get();

}


public long getBlocked() {

return blocked.get();

}


// inserted: approximate requests per second over last 60 seconds

public double requestsPerSecond() {

long now = System.currentTimeMillis();

long count = samples.stream().filter(t -> now - t <= 60_000).count();

return count / 60.0;

}


private void trim() {

long now = System.currentTimeMillis();

while (true) {

Long head = samples.peek();

if (head == null) break;

if (now - head > 60_000) samples.poll();

else break;

}

}


@Override

public String toString() {

return "allowed=" + allowed.get()

+ ", blocked=" + blocked.get()

+ ", rps=" + requestsPerSecond();

}

}



































-

-





+

+

+

+

+

+

Task

Improve the rate limiting implementation.

Thought for 2 minutes.

I'll proceed with implementing all the improvements in a logical order starting with Enhanced Metrics and Observability, then Performance Optimizations, and finally Advanced Rate Limiting Features. Let me create a TODO.md file to track our progress:

TODO.md

BLACKBOX AI thinking...

Now let's start with Phase 1: Enhanced Metrics and

Observability. First, I’ll create a comprehensive metrics class for rate limiting:

RateLimitMetrics.java

Cancel

Type a message (@ to add files)...

Auto

BlackBox

signal-limits-service

service

RateLimiter.java

RateLimitConfig.java

RateLimitMetrics.java

delivery

MessageDeliveryLoop.java

NoopDeliveryLoop.java

RedisMessageDelivery.java

challenges

ChallengeManager.java

ChallengeOption.java

RateLimitMetrics.java

RateLimiter.java

ChallengeOption.java

package service.limits;


import java.time.Instant;

import java.util.concurrent.*;

import java.util.concurrent.atomic.AtomicLong;

import java.util.concurrent.atomic.AtomicReference;


public class RateLimitMetrics {

allowedCount, blockedCount, resetCount

markReset(),getResetCount()

private final AtomicLong allowed = new AtomicLong();

private final AtomicLong blocked = new AtomicLong();

private final AtomicReference lastAllowed = new AtomicReference<>();

private final AtomicReference lastBlocked = new AtomicReference<>();


private final ConcurrentLinkedQueue samples = new ConcurrentLinkedQueue<>();


private final ScheduledExecutorService cleaner Executors.newSingleThreadScheduledExecutor();



public RateLimitMetrics() {

cleaner.scheduleAtFixedRate(this::trim, 1, 1, TimeUnit.SECONDS);

}


public void markAllowed() {

allowed.incrementAndGet();

lastAllowed.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public void markBlocked() {

blocked.incrementAndGet();

lastBlocked.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public long getAllowed() {

return allowed.get();

}


public long getBlocked() {

return blocked.get();

}


// inserted: approximate requests per second over last 60 seconds

public double requestsPerSecond() {

long now = System.currentTimeMillis();

long count = samples.stream().filter(t -> now - t <= 60_000).count();

return count / 60.0;

}


private void trim() {

long now = System.currentTimeMillis();

while (true) {

Long head = samples.peek();

if (head == null) break;

if (now - head > 60_000) samples.poll();

else break;

}

}


@Override

public String toString() {

return "allowed=" + allowed.get()

+ ", blocked=" + blocked.get()

+ ", rps=" + requestsPerSecond();

}

}





























-

-





+

+

+

+

+

+

Task

Improve the rate limiting implementation.

Thought for 2 minutes.

I'll proceed with implementing all the improvements in a logical order starting with Enhanced Metrics and Observability, then Performance Optimizations, and finally Advanced Rate Limiting Features. Let me create a TODO.md file to track our progress:

TODO.md

BlackBox.AI is thinking...

Now let's start with Phase 1: Enhanced Metrics and

Observability. First, I’ll create a comprehensive metrics class for rate limiting:

RateLimitMetrics.java

Cancel

Type a message (@ to add files)...

Auto

BLACKBOX AI

signal-server

service

RateLimiter.java

RateLimitConfig.java

RateLimitMetrics.java

delivery

MessageDeliveryLoop.java

NoopDeliveryLoop.java

RedisMessageDelivery.java

challenges

ChallengeManager.java

ChallengeOption.java

RateLimitMetrics.java

RateLimiter.java

ChallengeOption.java

package service.limits;


import java.time.Instant;

import java.util.concurrent.*;

import java.util.concurrent.atomic.AtomicLong;

import java.util.concurrent.atomic.AtomicReference;


public class RateLimitMetrics {

allowedCount, blockedCount, resetCount

markReset(), getResetCount()

private final AtomicLong allowed = new AtomicLong();

private final AtomicLong blocked = new AtomicLong();

private final AtomicReference lastAllowed = new AtomicReference<>();

private final AtomicReference lastBlocked = new AtomicReference<>();


private final ConcurrentLinkedQueue samples = new ConcurrentLinkedQueue<>();


private final ScheduledExecutorService cleaner Executors.newSingleThreadScheduledExecutor();



public RateLimitMetrics() {

cleaner.scheduleAtFixedRate(this::trim, 1, 1, TimeUnit.SECONDS);

}


public void markAllowed() {

allowed.incrementAndGet();

lastAllowed.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public void markBlocked() {

blocked.incrementAndGet();

lastBlocked.set(Instant.now());

samples.add(System.currentTimeMillis());

}


public long getAllowed() {

return allowed.get();

}


public long getBlocked() {

return blocked.get();

}


// inserted: approximate requests per second over last 60 seconds

public double requestsPerSecond() {

long now = System.currentTimeMillis();

long count = samples.stream().filter(t -> now - t <= 60_000).count();

return count / 60.0;

}


private void trim() {

long now = System.currentTimeMillis();

while (true) {

Long head = samples.peek();

if (head == null) break;

if (now - head > 60_000) samples.poll();

else break;

}

}


@Override

public String toString() {

return "allowed=" + allowed.get()

+ ", blocked=" + blocked.get()

+ ", rps=" + requestsPerSecond();

}

}





























-

-





+

+

+

+

+

+

Task

Improve the rate limiting implementation.

Thought for 2 minutes.

I'll proceed with implementing all the improvements in a logical order starting with Enhanced Metrics and Observability, then Performance Optimizations, and finally Advanced Rate Limiting Features. Let me create a TODO.md file to track our progress:

TODO.md

BLACKBOX AI thinking...

Now let's start with Phase 1: Enhanced Metrics and

Observability. First, I’ll create a comprehensive metrics class for rate limiting:

RateLimitMetrics.java

Cancel

Type a message (@ to add files)...

Auto

State of the art performance

BLACKBOX Autonomous Agent

Run multiple autonomous agents in parallel locally
and remotely to execute your tasks securely.

Multiple layers of protection designed to meet the strictest security and compliance requirements.

BLACKBOX Agents on +35 IDEs

BLACKBOX Agents run tasks on the BLACKBOX IDE, VSCode, Jetbrains & more…

Large code base context

BLACKBOX coding agent is optimized for both small and very large production-grade codebases that require extensive context.

Controllable Autonomy

Control the level of autonomy you want to grant the BLACKBOX coding agent while it executes your tasks.

Plan, Execute, Test

BLACKBOX agents are designed to implement tasks at a production level with detailed planning, high-precision execution, and a thorough testing phase.

Browser Agent

The BLACKBOX coding agent includes many built-in tools, including the browser agent, which provides autonomy in testing and iterating on its implementation.

Multi-Agent Remote Execution

Multi-agent remote execution with a chairman LLM to select the best execution for each task.

Multi-Agent Execution

BLACKBOX dispatches the same task to multiple agents at once: BLACKBOX, Claude Code, Codex, Gemini.

Chairman LLM

Every task is implemented differently by each agent, and the chairman LLM selects the best implementation for users.

Long running tasks

Support for long-running tasks that require extended hours of execution in isolated sandbox environments where agents can install, implement, and test.

Monitor agents concurrently

One view to monitor all agents' implementations for individuals and teams collaborating on different projects.

Multi-Agent API & CLI

Deeper integrations in your workflow and products.

Integrated in your products

Integrate the Multi-Agent API directly into your products to send tasks for multiple agents to run in isolated sandboxes.

CLI for local execution

Keep everything local by using the BLACKBOX CLI for coding tasks or large data analysis.

Analytics

Usage analytics to help guide adoption and understand how API call flows operate across your products.

Dedicated Support

Around-the-clock assistance with fast response times and a technical account manager who understands your setup.

Why BlackBox?

See how we compare to other enterprise
AI coding platforms.

BLACKBOX AI

GitHub Copilot

Claude Code

AI Models Available

300+ models

Limited models

Limited models

Multi Agents with Chairman LLM

Run BLACKBOX, Claude Code, Codex, etc

X

Limited

Multi-modal Input

Voice, image, video

X

Limited

On-Premise Deployment

Air-gapped support

X

Limited

Success Rate (SWE-bench)

+84%

N/A

80%

Execution Speed

2x faster

Baseline

Baseline

BLACKBOX AI

GitHub Copilot

Claude Code

Autonomous Agents

Full autonomy

X

Limited

AI Models Available

300+ models

OpenAI only

3-4 models

Multi-modal Input

Voice, image, video

X

X

On-Premise Deployment

Air-gapped support

X

Limited

Integrated Testing

In-chat browser

X

X

Success Rate (SWE-bench)

84%

80%

90%

BlackBox.AI Enterprise

GitHub Copilot

Cursor

AI Models Available

300+ models

OpenAI only

3-4 models

Autonomous Agents

Full autonomy

X

Limited

Multi-modal Input

Voice, image, video

X

X

On-Premise Deployment

Air-gapped support

X

Limited

Integrated Testing

In-chat browser

X

X

Success Rate (SWE-bench)

100%

80%

90%

Execution Speed

2x faster

Baseline

Baseline

Frequently Asked
Questions

Looking for something in particular?

Don't hesitate to reach out.

Can I try BLACKBOX AI Enterprise before committing?

We offer generous credits for teams at large enterprises to experiment with the BLACKBOX Agent before committing.

Can BLACKBOX AI be deployed on-premise?

What integrations are available?

Do you offer volume discounts for large teams?

What support response times can we expect?

How does BLACKBOX AI ensure code privacy?

Can I try BLACKBOX AI Enterprise before committing?

We offer generous credits for teams at large enterprises to experiment with the BLACKBOX Agent before committing.

Can BLACKBOX AI be deployed on-premise?

What integrations are available?

Do you offer volume discounts for large teams?

What support response times can we expect?

How does BLACKBOX AI ensure code privacy?

Can I try BLACKBOX AI Enterprise before committing?

We offer generous credits for teams at large enterprises to experiment with the BLACKBOX Agent before committing.

Can BLACKBOX AI be deployed on-premise?

What integrations are available?

Do you offer volume discounts for large teams?

What support response times can we expect?

How does BLACKBOX AI ensure code privacy?

Start with BLACKBOX

Join top Fortune 500 companies using
BlackBox AI Enterprise.

Money-back guarantee

Enterprise-grade security

Response within 4 hours

Start with BLACKBOX

Join top Fortune 500 companies using
BlackBox AI Enterprise.

Money-back guarantee

Enterprise-grade security

Response within 4 hours

Start with BLACKBOX

Join top Fortune 500 companies using
BlackBox AI Enterprise.

Money-back guarantee

Enterprise-grade security

Response within 4 hours

©2025 BlackBox. 535 Mission Street, San Francisco, CA, USA

©2025 BlackBox. 535 Mission Street, San Francisco, CA, USA

©2025 BlackBox. 535 Mission Street, San Francisco, CA, USA